Global Well-posedness of the Three-dimensional Viscous and Inviscid Simplified Bardina Turbulence Models

نویسندگان

  • YANPING CAO
  • EVELYN M. LUNASIN
چکیده

In this paper we present analytical studies of three-dimensional viscous and inviscid simplified Bardina turbulence models with periodic boundary conditions. The global existence and uniqueness of weak solutions to the viscous model has already been established by Layton and Lewandowski. However, we prove here the global well-posedness of this model for weaker initial conditions. We also establish an upper bound to the dimension of its global attractor and identify this dimension with the number of degrees of freedom for this model. We show that the number of degrees of freedom of the long-time dynamics of the solution is of the order of (L/ld) 12/5, where L is the size of the periodic box and ld is the dissipation length scale– believed and defined to be the smallest length scale actively participating in the dynamics of the flow. This upper bound estimate is smaller than those established for NavierStokes-α, Clark-α and Modified-Leray-α turbulence models which are of the order (L/ld) . Finally, we establish the global existence and uniqueness of weak solutions to the inviscid model. This result has an important application in computational fluid dynamics when the inviscid simplified Bardina model is considered as a regularizing model of the three-dimensional Euler equations. MSC Classification: 35Q30, 37L30, 76BO3, 76D03, 76F20, 76F55, 76F65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Attractors and Determining Modes for the 3d Navier-stokes-voight Equations

We investigate the long-term dynamics of the three-dimensional NavierStokes-Voight model of viscoelastic incompressible fluid. Specifically, we derive upper bounds for the number of determining modes for the 3D Navier-Stokes-Voight equations and for the dimension of a global attractor of a semigroup generated by these equations. Viewed from the numerical analysis point of view we consider the N...

متن کامل

Inertial Manifolds for Certain Subgrid-Scale α-Models of Turbulence

In this note we prove the existence of an inertial manifold, i.e., a global invariant, exponentially attracting, finite-dimensional smooth manifold, for two different sub-grid scale α-models of turbulence: the simplified Bardina model and the modified Leray-α model, in two-dimensional space. That is, we show the existence of an exact rule that parameterizes the dynamics of small spatial scales ...

متن کامل

Well-posedness and Inviscid Limits of the Boussinesq Equations with Fractional Laplacian Dissipation

This paper is concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Three main results are proven. The first result assesses the global regularity of two systems of equations close to the critical 2D Boussinesq equations. This is achieved by examining their inviscid limits. The second result relates the global regula...

متن کامل

Limite non visqueuse pour le système de Navier-Stokes dans un espace critique

In a recent paper [11], Vishik proved the global well-posedness of the two-dimensional Euler equation in the critical Besov space B 2,1. In the present paper we prove that Navier-Stokes system is globally well-posed in B 2,1, with uniform estimates on the viscosity. We prove also a global result of inviscid limit. The convergence rate in L is of order ν. keywords. navier-Stokes equations; Incom...

متن کامل

Global Well–posedness of the Three-dimensional Viscous Primitive Equations of Large Scale Ocean and Atmosphere Dynamics

In this paper we prove the global existence and uniqueness (regularity) of strong solutions to the three-dimensional viscous primitive equations, which model large scale ocean and atmosphere dynamics. MSC Subject Classifications: 35Q35, 65M70, 86-08,86A10.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006